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Abstract. I study the product of independent identically distributedD ×D random probability
matrices. Some exact asymptotic results are obtained. I find that both the left and the right
products approach exponentially a probability matrix (asymptotic matrix) in which any two
rows are the same. A parameterλ is introduced for the exponential coefficient which can be
used to describe the convergent rate of the products.λ depends on the distribution of the
individual random matrices. I findλ = 3

2 for D = 2 when each element of the individual
random probability matrices is uniformly distributed in [0, 1]. In this case, each element of
the asymptotic matrix follows a parabolic distribution function. The distribution function of the
asymptotic matrix elements can be shown numerically to be non-universal. Numerical tests are
carried out for a set of random probability matrices with a particular distribution function. I find
thatλ increases monotonically from'1.5 to'3 asD increases from 3 to 99, and the distribution
of random elements in the asymptotic products can be described by a Gaussian function with a
mean of 1/D.

In recent years, there has been an increasing interest in studying the properties of random
matrices [1]. Random matrices can be used to describe disordered systems, chaos and
biological problems, and in the statistical description of complex nuclei [1, 2]. There are
two different kinds of problem related to random matrices. One of them is to study the
statistical properties of a single random matrix. Wigner [3] was the first to use a single
large random matrix to explain the statistical behaviour of levels in nuclear physics. The
semicircular and the circular theorems [1, 3] had been obtained for the Gaussian unitary,
Gaussian orthonormal and Gaussian symplectic ensembles. The second problem is to study
the statistical behaviour of a product of random matrices. The product of random matrices
has attracted much attention in most recent works because many statistical problems in
disordered systems and chaotic dynamical systems can be formulated as the study of such
a product. For the product of random matrices, there are beautiful Furstenberg [4] and
Oseledec [5] theorems about the existence of Lyapunov characteristic exponents. However,
a detailed analysis of the product of random matrices is very difficult due to the non-
commutability of random matrices, and there are not many general exact results about
structures of the products of random matrices. Therefore, any exact results on the product
of a particular type of random matrices should be interesting.

In this work, I present some exact results of the product of independent identically
distributed random probability matrices. A probability matrixT of D × D is defined
as T (ij) > 0 and

∑D
j=1 T (ij) = 1, i = 1, 2, . . . , D, whereT (ij) are the elements ofT .
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Physically, such matrices can be used to describe the dynamics of aD-state classical system
if Tt (ij) is interpreted as the probability for the system in theith state jumping to thej th
state at timet . If the hopping process is stochastic, the evolution of the system is described
by the product of the random probability matricesTt . It is easy to show that the product of
two probability matrices is still a probability matrix, i.e.A = T1T2 is a probability matrix
providedT1 andT2 are two probability matrices of orderD × D. In this paper, I show that
the product of independent identically distributed random probability matrices approaches
exponentially, in terms of the number of matrices in the product, a matrix in which any
two rows are the same. For 2× 2 independent random probability matrices in which any
element is uniformly distributed in [0, 1], I find that the asymptotic matrix elements have a
parabolic distribution. The main results are described by the following propositions.

Proposition 1. Let {Tk} be a set ofD × D independent identically distributed random
probability matrices in which all elements are random and have the same distribution
function. If A(n) = ∏n

k=1 Tk ≡ TnTn−1 · · · T2T1 (the left product) andB(n) = ∏n
k=1 Tk ≡

T1T2 · · · Tn−1Tn (the right product), then

lim
n→∞ A(n) =


a(1) a(2) . . . a(D)

a(1) a(2) . . . a(D)
...

...
. . .

...

a(1) a(2) . . . a(D)

 (1)

and

lim
n→∞ B(n) =


a(1) a(2) . . . a(D)

a(1) a(2) . . . a(D)
...

...
. . .

...

a(1) a(2) . . . a(D)

 (2)

wherea(i), (i = 1, 2, . . . D), are positive random numbers with
∑

i a(i) = 1. However,
the values ofa in the left product are fixed for a given sequence of random matrices while
they keep changing in the right product.

Before we prove this proposition, let us look at a special case ofD = 2. Let

A(n) ≡ Tn · · · T2T1 =
(

yn(1) 1 − yn(1)

yn(2) 1 − yn(2)

)
(3)

then, fromA(n) = TnA(n − 1), we obtain the following recursion relations foryn(1) and
yn(2)

yn(1) = x(1)yn−1(1) + (1 − x(1))yn−1(2) (4a)

yn(2) = x(2)yn−1(1) + (1 − x(2))yn−1(2) (4b)

wherex(1) andx(2) are the two independent random elements ofTn, i.e.

Tn =
(

x(1) 1 − x(1)

x(2) 1 − x(2)

)
.

Therefore,

yn(1) − yn(2) = [x(1) − x(2)][yn−1(1) − yn−1(2)]

which gives ∣∣∣∣ yn(1) − yn(2)

yn−1(1) − yn−1(2)

∣∣∣∣ = |x(1) − x(2)| 6 1 . (5)
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Thus, we expect that|yn(1) − yn(2)| approaches zero exponentially. Ifx(1) andx(2) are
uniformly distributed in [0, 1], then, for a largen,

yn(1) − yn(2) ∼ e−λn (6)

with

λ = −〈ln |x(1) − x(2)|〉 = −
∫ 1

0

∫ 1

0
ln |x(1) − x(2)| dx(1) dx(2) = 3

2 .

Therefore, the left product of independent identically distributed 2× 2 random probability
matrices exponentially approaches a matrix of the form(

a1 1 − a1

a2 1 − a2

)
(7)

with λ = 1.5. Similarly, it is easy to show that the same conclusion can be drawn for a
right product.

The above approach can be extended to the general cases. Without losing generality,
we need only show that the values of elements in the first column of the product of random
probability matrices approach each other. Let

An ≡


yn(1)

yn(2)

. . . ∗

. . .

yn(D)

 = TnA(n − 1) . (8)

We want to show that〈|yn(k) − yn(1)|〉 ' exp−λn, λ > 0. It is not hard to see that

yn(i) − yn(D) =
D−1∑
k=1

[x(i, k) − x(D, k)][yn−1(k) − yn−1(D)] (9)

wherex(i, j) are matrix elements ofTn which satisfies the conditions of a probability matrix.∑
j x(i, k) = 1 is used in the above derivation. Define

zn(i) = yn(i) − yn(D) i = 1, . . . , D − 1 . (10)

Equation (9) can be written in the following matrix form:
zn(1)

zn(2)
...

zn(D − 1)

 = Cn


zn−1(1)

zn−1(2)
...

zn−1(D − 1)



=


x(1, 1) − x(D, 1) . . . x(1, D − 1) − x(D, D − 1)

x(2, 1) − x(D, 1) . . . x(2, D − 1) − x(D, D − 1)
...

. . .
...

x(D − 1, 1) − x(D, 1) . . . x(D − 1, D − 1) − x(D, D − 1)



×


zn−1(1)

zn−1(2)
...

zn−1(D − 1)

 (11)
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whereCn is a (D − 1) × (D − 1) matrix related to probability matrixTn. It is not difficult
to show the following relation betweenTn andCn:

‖Tn − µI‖ = (1 − µ)‖Cn − µI‖ (12)

that is, the eigenvalues of matrixCn are D − 1 of the eigenvalues of matrixTn (one of
the eigenvalues ofTn with value 1 is excluded)†. It is well known that the magnitudes of
eigenvaluesµi, i = 1, . . . , D, of a D × D probability matrix are not greater than 1, i.e.
|µi | 6 1. Furthermore, matricesC do not have any common eigenvectors‡. Therefore,

〈
zn(1)

zn(2)
...

zn(1)


〉

∼ e−λN (for a largeN) (13)

with λ > 0, i.e. the values of elements in the first column of the left productA approach
each other exponentially. It is easy to show that the same result is true for any other column
of A. Thus, relation (1) holds. Similarly, it can be shown that relation (2) also holds.

This result is not really surprising. It is known that the magnitudes of eigenvalues of
a probability matrix are equal to or smaller than 1. A probability matrix always has an
eigenvalue 1 with the corresponding eigenvector (mode)

1
1
...

1


(there may exist other eigenvectors with eigenvalue 1). The eigenvalues of the product will
either approach 0 or stay at 1 when such matrices are multiplied together. Because each
matrix is random and independent, these matrices are not commutable among themselves,
and they do not in general have the same eigenvector except

1
1
...

1


which will remain unchanged since its eigenvalue is equal to 1. Therefore, all other modes
are mixed together, and decay with the multiplication. The relation (1) is then expected.

Proposition 2. Let {Tk} be a set of 2× 2 independent identically distributed random
probability matrices in which all elements are uniformly distributed in [0, 1]. Proposition 1
guarantees that

lim
n→∞ A(n) ≡ lim

n→∞ TnTn−1 · · · T2T1 =
(

a 1 − a

a 1 − a

)
† First addD − 1 columns to the last column of‖Tn − µI‖. All elements of the last column are equal to 1− µ

because
∑

j x(i, j) = 1. Take the common factor 1− µ out, and subtract the last row from the firstD − 1 rows,

then the top-left(D − 1) × (D − 1) block is exactly‖Cn − µI‖.
‡ A probability matrixTi always has an eigenstate

1
1
.
.
.

1


with eigenvalue 1. The eigenvalues and eigenstates are given by matrixCn which depends on the detailed structure
of Ti . In general,Cn do not have common eigenstates.
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and

lim
n→∞ B(n) ≡ lim

n→∞ T1T2 · · · Tn−1Tn =
(

a 1 − a

a 1 − a

)
.

Thena is a random variable whose distribution function is

f (a) = 6a(1 − a) . (14)

To prove proposition 2, we notice thata is a random variable which obeys the recursion
relation

an = x(1)an−1 + x(2)(1 − an−1) (15)

wherex(1) andx(2) are two independent random numbers uniformly distributed in [0, 1].
Sincef (a) is the asymptotic distribution function ofan, i.e. n → ∞, an andan−1 should
have the same distribution functionf (a) when n → ∞. Therefore, we can obtain the
following equation in the integral form for distribution functionf (a)

f (a) =
∫ 1

0

∫ 1

0

∫ 1

0
f (b)δ(a − bx1 + bx2 − x2) dx1 dx2 db . (16)

Substitutingδ(a − bx1 + bx2 − x2) by

1

2π

∫ ∞

−∞
eiq(a−bx1+bx2−x2) dq (17)

and integrating overx1 andx2, equation (16) becomes

f (a) = 1

2π

∫ 1

0
db

f (b)

b(b − 1)

∫ ∞

−∞
dq

eiqa + eiq(a−1) − eiq(a−b) − eiq(a+b−1)

q2
. (18)

Differentiating equation (18) with respect toa twice and noting thatf (a) = f (1 − a), we
can show thatf (a) satisfies the differential equation

f ′′ = − 2

a(1 − a)
f (19)

with boundary conditionsf (0) = f (1) = 0. Equation (19) can easily be solved by the
power-series expansion method sincea = 0 (or a = 1) is a regular singular point. The
solution of this equation (normalized to 1) is that of equation (14).

I have carried out some numerical simulations to further confirm the results in the above
propositions. Figure 1 is the distribution function of an element of the asymptotic matrix
of the product of 2× 2 independent random probability matrices in which elements are
uniformly distributed in [0, 1]. The full curve is the numerical result, and the broken curve
is the analytical expression (14). They agree very well with each other. In order to check
whether the distribution function of the product depends on the distribution function of
individual random probability matrices, I also study the product of independent random
probability matrices in which elements are distributed in [0, 1] according to function

f (x) =
∫ 1

0
. . .

∫ 1

0
δ

(
x − x1∑D

1 xi

)
dx1 . . . dxD . (20)

Distribution (20) is chosen because it is easy to generate on a computer. Although I
cannot find the distribution function for the matrix elements of the asymptotic product
analytically in this case, numerical results can easily be obtained. Figure 2 shows the
single-variable distribution functions of random matrix elements in the right product of
such random probability matrices of the order of 2× 2 and 4× 4. The broken curves are
the numerical results and the full curves are the fits of Gaussian functions. The numerical
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Figure 1. Distribution function of a random matrix element in the right product of independent
identically distributed 2× 2 random probability matrices in which all elements are uniformly
distributed in [0, 1]. The broken curve is the numerical result and the full curve isf (a) =
6a(1 − a).

Figure 2. Distribution function of an arbitrary random matrix element in the right product of
independent identically distributed 2×2, 4×4 random probability matrices in which all elements
are distributed in [0, 1] according to equation (20). The broken curves are the numerical results
and the full curves are the fits of Gaussian functions.

results can be well described by a Gaussian function with its mean equal to 1/D. Compared
with that in figure 1, we can see that the distribution function of the product of independent
identically distributed random probability matrices depends on the distribution of individual
random matrices. In other words, unlike the large number theorem for random numbers,
the distribution function of the product is not universal.
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Figure 3. ln〈|An(1, 1) − An(2, 1)|〉 versusn of the left product of independent identically
distributed random matrices of 3× 3, 4× 4, 8× 8, 16× 16, 99× 99, with 100 ensembles.λ’s
can be obtained from the slopes. The slopes increase monotonically fromλ ' 1.5 to λ ' 3 as
D changes fromD = 3 to D = 99.

The results in proposition 1 are checked numerically by using the random probability
matrices whose elements are independently, except for the constraints of a probability
matrix, distributed in [0, 1] according to equation (20). I compute the decay of〈|An(1, 1)−
An(2, 1)|〉 with n, where〈· · ·〉 denotes ensemble average, andAn(i, j) are the elements of
the product ofn random matrices. Figure 3 shows ln〈|An(1, 1) − An(2, 1)|〉 versus lnn
for the left product of 3× 3, 4× 4, 8× 8, 16× 16 and 99× 99 random matrices. 100
ensembles are used in the numerical study. Figure 4 is a similar plot (to figure 1) for
a right product. The exponential decay of the quantity is clearly shown in these figures.
Numerically, I find thatλ increases monotonically from'1.5 to '3 asD increases from 3
to 99.

In conclusion, I have shown that both left and right products of a sequence of
independent identically distributed random probability matrices exponentially approach
a probability matrix in which all elements in any column vector are the same. An
exponential exponent is used to describe this approach rate. I also find thatλ increases
monotonically from' 1.5 to ' 3 as D increases from 3 to 99 when the distribution
function of individual random matrices is described by equation (20). I also find that
λ = 3

2 for D = 2 when random matrix elements are uniformly distributed in [0, 1]. It
is well known that at least one of the eigenvalues of a probability matrix is equal to 1
while the rest of them are distributed in [0, 1] [6]. A large D means that the product
has more channel to decay to the stable structure (1) or (2). Thus it is expected that
the decay is faster for largeD, i.e. λ increases withD. In order to understand the
meaning of the results, let us look at a physical model system ofD states. Assume the
system can move randomly from theith state to thej th state with probabilityTt (ij) at
time step t . If the system starts from an initial distribution, one might want to know
the probability of the system in thei ′ state, i.e. the distribution function after a long
time. The question may be whether there is a stable distribution (equilibrium state),
and/or what it is if there is one. Obviously, the long-time distribution(s) are the non-
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Figure 4. ln〈|An(1, 1) − An(2, 1)|〉 versusn of the right product of independent identically
distributed random matrices of 3× 3, 4× 4, 8× 8, 16× 16, 99× 99. λ’s can be obtained from
the slopes. The slopes increase monotonically fromλ ' 1.5 to λ ' 3 asD changes fromD = 3
to D = 99.

trivial left eigenstate(s) of the right product of the random matricesTt . In equation (2),
although the structure for a product will not change whenn is larger than a certain value,
elementsa(i) do change as another independent random probability matrix is multiplied
by the product. Therefore, the system does not have a stable distribution as expected
since the dynamics of the system is a stochastic process, and transition probabilities keep
changing with time. Both the right and left products, however, have a non-trivial unique
right eigenstate with eigenvalue 1. The eigenstate takes the same value in each of its
D components. Unfortunately, I am not able to obtain any meaningful non-trivial results
by applying the propositions to this simple model system. It will be interesting to find
some interesting physical systems in which the propositions can be used to extract useful
information. In contrast to the sum of independent random variables whose distribution
is Gaussian no matter what the distribution function of individual random variables is, the
distribution function of an element in the product of independent identically distributed
random matrices depends on the distribution of individual random matrices. Therefore, the
distribution function of the product of independent identically distributed random matrices
is not universal.
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